Dynamic range adaptation to sound level statistics in the auditory nerve.
نویسندگان
چکیده
The auditory system operates over a vast range of sound pressure levels (100-120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20-40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting toward the most frequently occurring level. Here, we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain and not sufficient (0.25 dB/dB, on average, for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway.
منابع مشابه
Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics of the stimulus, partially alleviating the so-called "dynamic-range problem." However, the mechanism and source of this adaptation along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell (IH...
متن کاملTime course of dynamic range adaptation in the auditory nerve.
Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently o...
متن کاملTime course of dynamic range adaptation in the auditory nerve 1
Time course of dynamic range adaptation in the auditory nerve 1 Bo Wen, Grace I. Wang, Isabel Dean, and Bertrand Delgutte 2 Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, Department of Otology and 3 Laryngology, Harvard Medical School, Boston, MA 02115, Department of Electrical Engineering and Computer 4 Science and Research Laboratory of Electronics, MIT, Ca...
متن کاملRapid neural adaptation to sound level statistics.
Auditory neurons must represent accurately a wide range of sound levels using firing rates that vary over a far narrower range of levels. Recently, we demonstrated that this "dynamic range problem" is lessened by neural adaptation, whereby neurons adjust their input-output functions for sound level according to the prevailing distribution of levels. These adjustments in input-output functions i...
متن کاملLevel-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds.
The responses of auditory neurons tuned to stimulus intensity (i.e., nonmonotonic rate-level responders) have typically been analyzed with stimulus paradigms that eliminate neuronal adaptation to recent stimulus statistics. This procedure is usually accomplished by presenting individual sounds with long silent periods between them. Studies using such paradigms have led to hypotheses that nonmon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 44 شماره
صفحات -
تاریخ انتشار 2009